Supplementary data

Impact of the amino-acid sequence on the conformation of sidechain lactam-bridged octapeptides

Saskia Neukirchen^{a,b}, Viktoria Krieger^{b,1}, Cornelia Roschger^a, Mario Schubert^a, Brigitta Elsässer^a, and Chiara Cabrele^{a,*}

^a Dept. of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.

^b Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany

¹ Present address: Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.

* Corresponding author: Tel. 0043 662 80447240. Email: chiara.cabrele@sbg.ac.at

cyclopeptide no.	KD- <i>(i,i+4)</i> - lactam- bridged sequence ^a	M _{calc.d} (Da)	[M+H/Na] [*] _{found} ^b (Da)	[M-H] ⁻ _{found} c (Da)	t _R ^d
1	K RLK D LVP	991.27	992.28 (H ⁺)		25.3
3	SR k kel d p	995.17	996.50 (H ⁺)		18.9
4	V k kve d lQ	981.18	1004.93 (Na ⁺)	980.88	23.5
5	VS k vei d Q	940.09	941.11 (H⁺)		22.5
7	SR k kel d a	969.13	970.03 (H ⁺)		18.0
8	SR k kle d p	995.17	995.93 (H ⁺)		18.4
9	SR k kle d a	969.13	970.30 (H ⁺)		18.7
10	V K RBQ D LQ	994.18	995.18 (H ⁺)		21.4
11	V K RLQ D LQ	1022.24	1023.15 (H⁺)		24.4
12	V K rzq d lq	1022.24	1023.78 (H ⁺)		24.3
13	V K RWQ D LQ	1095.29	1096.41 (H ⁺)		24.9
14	V K RVQ D LQ	1008.21	1009.12 (H^{+})		22.6
15	VKQLQDLQ	994.18	1016.97 (Na⁺)	993.33	26.4
16	V K QZQ D LQ	994.18	1017.30 (Na [⁺])	992.86	26.3
17	V K QWQ D LQ	1067.24	1090.15 (Na [⁺])	1066.13	26.5
18	V k kel d lQ	994.19	996.04 (H ⁺)		24.7
19	V k kev d lq	981.18	1004.07 (Na [⁺])	980.02	23.3

Table S1. Amino-acid sequence and analytical data of the synthesized and purified cyclopeptides (B = Aib; Z = Nle).

^aAll cyclopeptides are N-terminally acetylated and C-terminally amidated. Bold residues are side-chain cyclized. ^bMass obtained by MALDI-TOF-MS in positive mode. ^cMass obtained by MALDI-TOF-MS in negative mode. ^dRetention time t_R obtained by using the elution system and gradient specified in the section Methods.

Figure S1. RP-HPLC and MALDI-TOF-MS characterization of purified cyclopeptides 1, 3, 4, 5, 7, 8.

Figure S2. RP-HPLC and MALDI-TOF-MS characterization of purified cyclopeptides 9-14.

Figure S3. RP-HPLC and MALDI-TOF-MS characterization of purified cyclopeptides 15-19.

Figure S4. 1D ¹H-NMR spectra of purified cyclopeptides 5, 10-18 in H_2O/D_2O (12:1, v/v) at 298 K (the peptides were 0.2-0.9 mg in 500 µl solvent).

Residue	α-ΝΗ	α-CH	β-СН	ү-СН	δ-CH	ε-CH	ε-NH	ζ-NH (bridge)
V1	8.152	3.982	2.071	0.981/0.958	-	_	-	-
		63.47	32.35	20.67/20.98				
K2	8.216	4.267	1.788	1.479/1.260	1.622/1.439	2.818/3.526	-	8.016
		57.00	31.53	24.85	29.26	41.66		
R3	8.188	4.096	1.796	1.668/1.556	3.227	-	7.265	-
		58.14	30.38	27.16	43.21			
Aib4	8.066	-	1.494/1.526	-	-	-	-	-
		59.22	26.18/27.26					
Q5	8.038	4.117	2.104	2.447/2.389	-	-	6.844/	-
		57.48	29.00	34.02			7.494	
D6	8.421	4.656	2.894/2.800	-	-	-	-	-
		54.16	38.43					
L7	7.995	4.336	1.755/1.686	1.682	0.886/0.925	-	-	-
		55.84	42.12	26.89	23.42/24.75			
Q8	8.114	4.292	2.177/2.052	2.426	-	-	6.863/	-
		55.80	29.33	33.94			7.519	

Table S2. ¹H and ¹³C chemical shifts (ppm) of cyclopeptide **10**, \sim 1 mM in H₂O/D₂O (12:1, v/v) at 303 K.

NOE type	Residue i	Residue i+n	NOE	Upper limit
Sequential	1 VAL HA	2 LYL H	VS	2.5
Intra-residue	1 VAL HB	1 VAL H	VS	2.5
Sequential	2 LYL HA	3 ARG H	ms	3.5
Intra-residue	3 ARG HA	3 ARG H	mw	4.5
Sequential	3 ARG HA	4 AIB H	mw	4.5
Intra-residue	3 ARG QB	3 ARG H	ms	3.5
Intra-residue	5 GLN HA	5 GLN H	mw	4.5
Intra-residue	5 GLN HA	5 GLN QB	mw	4.5
Sequential	5 GLN HA	6 ASL H	mw	4.5
Sequential	6 ASL H	5 GLN H	mw	4.5
Intra-residue	5 GLN H	5 GLN QB	mw	4.5
Inter-residue	6 ASL HA	2 LYL HE3	mw	4.5
Intra-residue	6 ASL HA	6 ASL H	mw	4.5
Sequential	6 ASL HA	7 LEU H	mw	4.5
Sequential	6 ASL H	7 LEU H	mw	4.5
Sequential	7 LEU HA	8 GLN H	mw	4.5
Intra-residue	1 VAL HA	1 VAL QG2	ms	3.5
Intra-residue	2 LYL HA	2 LYL QB	ms	3.5
Intra-residue	2 LYL HA	2 LYL H	mw	4.5
Inter-residue	6 ASL HB3	2 LYL HE2	VS	2.5
Intra-residue	2 LYL HN	2 LYL HE3	ms	3.5
Intra-residue	7 LEU HA	7 LEU H	mw	4.5
Intra-residue	6 ASL H	6 ASL HB3	mw	4.5

Table S3. NOE constraints of cyclopeptide 10 (LYL and ASL are LYS and ASP in the lactam bridge).

 Table S4. NMR statistics for the obtained structural ensemble of cyclopeptide 10.

Parameter	Value/Number
NOE constraints	23
intraresidue	13
sequential/interresidue	10
NOE constraints below upper limits	
very-strong/medium-strong/medium-weak/weak (2.5/3.5/4.5/5.5 Å)	23
Force field energies (kJ/mol)	
total	-2.83716 x10 ⁴
van der Waals	6.92961E x10 ³
electrostatic	-2.82470 x10⁵
RMSD to the mean coordinates (Å) all atoms of ten structures	1.44
$C\alpha$ atoms (residues 1-8) (Å)	0.543
$C\alpha$ and $C\beta$ atoms (residues 1-8) (Å)	0.653

Figure S5. 2D 1 H- 1 H TOCSY spectrum of **10**, ~1 mM in H₂O/D₂O (12:1, v/v), at 303 K (mixing time of 80 ms).

Figure S6. NMR assignment walk illustrated with a 2D ROESY spectrum of **10**, \sim 1 mM in H₂O/D₂O (12:1, v/v), at 303 K (mixing time 200 ms).

	Group A										
1			Κ	R	L	K	D	L	V	Р	
3	S	R	K	K	Е	L	D	Р			
8	S	R	K	K	L	Е	D	Р			
17		V	K	Q	W	Q	D	L	Q		
		Group B									
4		V	K	K	V	Е	D	L	Q		
5	V	S	K	V	Е	Ι	D	Q			
19		V	K	K	Е	V	D	L	Q		
					Gro	up C	;				
7	S	R	Κ	K	Е	L	D	А			
9	S	R	K	K	L	Е	D	А			
					Gro	up D)				
10		V	Κ	R	В	Q	D	L	Q		
11		V	Κ	R	L	Q	D	L	Q		
12		V	Κ	R	Z	Q	D	L	Q		
13		V	Κ	R	W	Q	D	L	Q		
14		V	Κ	R	V	Q	D	L	Q		
15		V	K	Q	L	Q	D	L	Q		
16		V	K	Q	Z	Q	D	L	Q		
18		v	Κ	K	E	L	D	L	Q		

Table S5. Sequence alignment of the cyclopeptides based on the core triad (B = Aib, Z = Nle).

Figure S7. (Top) T47D cell viability upon 24 h incubation with the indicated cyclopeptides at the concentration of 50 μ M and 500 μ M. Cyclopeptides 5 (group B), 12 and 18 (group D) were the most active. Cyclopeptides 10 and 13 (group D) and 17 (group A) were inactive. (Bottom) Arrangement of the side chains at positions 1 and 4/5 in the active cyclopeptides 5, 12, 18 and in the inactive cyclopeptides 10 and 13.