SUPPLEMENTARY FIGURES

Figure S1. Expression of the *cml1* gene during fruiting body formation of *C. cinerea* AmutBmut. Black numbers indicate fold changes relative to vegetative mycelium according to the S1 dataset of (Muraguchi et al., 2015). The figure has been adapted from Figure 1 from this paper. The numbers in the circles indicate different fruiting body stages and tissues. Cap tissue is indicated by green and stipe tissue by turquoise shading of the circles. Yellow shading of the circles indicates mycelial tissue.

Figure S2. Structural alignment of CML1 with other proteins. Cartoon representation of CML1 (top), *Francisella tularensis* intracellular growth loci protein E (IGLE, A, PDB ID: 5AMT), *Bacillus stearothermophilus* TRP RNA-binding attenuation protein (TRAP, B, PDB ID:3ZZS), telluride resistance protein (C, PDB ID:2QZ7) and hypothetical protein TM1070 from *Thermotoga maritima* (D, PDB ID:1NC7) colored from blue to red from N to C-terminus with secondary structure elements labelled. Overlay of CML1 colored in dark green with other proteins colored in orange is represented in the bottom panels.

Figure S3. Expression levels of CML1 wildtype (WT) and variants thereof (H54A, N55A, W94A, R114A) in the respective *E. coli* BL21 transformants used for the nematotoxicity assays (Figure 10). Bacterial whole cell extracts (WCE) and supernatants (S) after high spin centrifugation thereof (Kunzler et al., 2010) were loaded on an SDS-PAGE gel and stained with Coomassie Blue. BL21 containing empty vector (EV) served as negative control. The protein sizes of the marker and the position of the CML1 band are indicated.

Figure S4. Toxicity of CML1 towards bacterivorous nematodes *C. elegans and C tropicalis.* (A) The development of L1 larvae feeding on *E. coli* expressing CML1 wildtype protein (WT) or empty vector (EV) to the L4 stage was assessed. The error bars indicate the standard deviation of five replicates. Comparisons between conditions were performed using Dunnett's Multiple Comparison Test (ns, not significant; *, P<0.05;**, P<0.01,***, P<0.001;****, P<0.0001). (B) Expression levels of CML1 wildtype (WT) in the respective *E. coli* BL21 transformants used for the nematotoxicity assay compared to BL21 containing empty vector (EV). Bacterial whole cell extracts (WCE) and high spin centrifugation supernatants (S) thereof (Kunzler et al., 2010) were loaded on an SDS-PAGE gel and stained with Coomassie Blue. Protein sizes of the marker and the position of the CML1 band are indicated.

SUPPLEMENTARY TABLES

Table SI.	Oligonucleotides	used in this	study.	Restrictions	sites	are	underlined	and	substituted
codons fo	or site-directed mu	tagenesis ar	e in bo	ld.					

Oligonucleotide	Sequence (5' \rightarrow 3')
locus-fwd	GGAACTCTGCGGCACATGATGAAGG
locus-rev	AGGAATCCTGTGGACCGCTTGATTG
Ndel-CML1-N	CATATGGCCATCTTTCACACCGGCAGCGAGCTCTTC
BamHI-CML1-C	GGATCCTCAAAGGTTATCCGGGAGGGCATAAGCGG
Ndel-CML1-NHis	<u>CATATG</u> GCCCATCATCATCATCATCATCACATCTTTCA CACCGGCAGCGAGCTCTTC
CML1-H54A-fwd	CGTCTCCTTCAGC GCC AACTACACCCGCTTC
CML1-H54A-rev	GAAGCGGGTGTAGTT GGC GCTGAAGGAGACG
CML1-N55A-fwd	CTCCTTCAGCCAC GCC TACACCCGCTTCTCC
CML1-N55A-rev	GGAGAAGCGGGTGTA GGC GTGGCTGAAGGAG
CML1-W94A-fwd	CGAGCACTATCCAT GCC GGATCGTCGACTG
CML1-W94A-rev	CAGTCGACGATCC GGC ATGGATAGTGCTCG
CML1-R114A-fwd	TTCCGGGGGCGGTTAAT GCC GATAAGGTCACTA
CML1-R114A-rev	GTAGTGACCTTATC GGC ATTAACCGCCCCCGGA

Table SII. Plasmids used in this study.

Plasmid	Description	Source
PMA64	pET22-NHisCML1	This study
PMA78	pET22-CML1	This study
PMA123	pET24-CML1	This study
PMA360	pET22-NHisCML1(H54A)	This study
PMA361	pET22-NHisCML1(N55A)	This study
PMA362	pET22-NHisCML1(W94A)	This study
PMA363	pET22-NHisCML1(R114A)	This study
PMA857	pET22-CML1(H54A)	This study
PMA858	pET22-CML1(N55A)	This study
PMA859	pET22-CML1(W94A)	This study
PMA860	pET22-CML1(R114A)	This study

Table SIII. CML1 homologues found by a BLAST search in the Mycocosm database (Grigoriev et al., 2014).

Coprinopsis cinerea 439037 Coprinopsis cinerea AmutBmut1 pab1-1 v1.0 1-127 XP_001832882.2 -
Coprinopsis cinerea O78993Coprinopsis cinerea okayama71-127100
Volvariella volvacea 1 121128 Volvariella volvacea 1/22 1-127 57
Volvariella volvacea 2 121154 Volvariella volvacea V23 1-126 53
Coprinopsis sclerotiger 521131 Coprinopsis C. sclerotiger v1.0 1-128 54
Volvariella volvacea 3 121144 Volvariella V. volvacea V23 1-126 48
Coprinus phaeopunctatus 1 398102 Coprinus phaeopunctatus MPI-PUGE- 1-128 52
Coprinus phaeopunctatus 2 398089 AT-0042 v1.0 1-128 48
Agaricus bisporus127454Agaricus bisporus var. burnettii JB137-S81-127XP_007329114.147
Gymnopus luxurians 46110 Gymnopus luxurians v1.0 1-127 KIK57536.1 43
Amanita muscaria346422Amanita muscaria Koide v1.01-128KIL57993.151
Clitocybe sp. 68350 Clitocybe sp. CONT 1119283 v1.0 1-127 49
Piloderma croceum 1 75139 Diladerma D. croceum 5 4500 ut 0 1-125 KIM78688.1 44
Piloderma croceum 2 824131 Piloderma P. croceum F 1598 V1.0 1-125 43
Russula earlei 1 1201497 Russula R. earlei BPL698 v1.0 1-127 44
Russula earlei 2 1201446 1-127 43
Russula earlei 3 1227043 R. earlei BPL698 v1.0 1-126 40
Russula earlei 4 1242301 1-126 40
Laccaria bicolor 1 328965 Laccaria bicolor v2.0 1-128 XP_001883034.1 45
Laccaria bicolor 2 630915 L. bicolor v2.0 111-238 XP_001883043.1 44
Laccaria amethystina 1 13511 1-128 KIJ92571.1 44
Laccaria amethystina 2 1673216 1-127 KIJ96346.1 42
Laccaria amethystina 3 7479
Laccaria amethystina 4 686406 1-127 KIJ90915.1 44
Rhodocollybia butyracea 1520169Rhodocollybia butyracea CCBAS 279 v1.01-12742
Rhodocollybia butyracea 2 1360276 R. butyracea AH 40177 v1.0 1-127 41
Rhodocollybia butyracea 3 134408 R. butyracea CCBAS 279 v1.0 1-128 41
Rhodocollybia butyracea 4 298035 R. butyracea AH 40177 v1.0 1-128 41
Galerina marginata 1 1352495 1-128 KDR69481.1 34
Galerina marginata 2 411187 Galerina marginata v1.0 1-131 KDR77697.1 31
Hebeloma cylindrosporum 1 444533 Hebeloma cylindrosporum h7 v2.0 279-412 KIM42913.1 32
Hebeloma cylindrosporum 2 444533 H. cylindrosporum h7 v2.0 145-279 KIM42913.1 30
Sphaerobolus stellatus 1 42948 1-132 KIJ53189.1 32
Sphaerobolus stellatus 2 42925 1-130 KIJ53140.1 31
Sphaerobolus stellatus 3 775828 Sphaerobolus stellatus v1.0 1-131 ^a KIJ53146.1 27
Sphaerobolus stellatus 4 155324 1-139 ^a KIJ53139.1 28
Sphaerobolus stellatus 5 85738 1-129 KIJ53145.1 27
Mycena rebaudengoi 1 1514180 1-129 32
Mycena rebaudengoi 2 1071743 Mycena rebaudengoi CBHHK068 v1.0 1-129 31
Mycena rebaudengoi 3 1090025 1-129 31
Mycena latifolia 1243747 Mycena latifolia 10383 v1.0 1-127 33
Mycena epipterygia 676034 Mycena epipterygia CBHHK145m v1.0 1-127 28
Roridomyces roridus 803218 Roridomyces roridus 9284 v1.0 1-130 25

^a contains C-terminal extension

Structure	Apo CML1 Platinium derivative	CML1 - H-type I complex	CML1 – Lewis A complex		
Data collection					
Space Group	P 2 ₁	<i>P</i> 3 ₁	<i>P</i> 3 ₁		
Unit cell a, b, c (Å) α, β, γ (°)	44.50, 73.63, 111.96 90, 101.03, 90	74.04, 74.04, 119.89 90, 90, 120	73.925, 73.925, 119.59 90, 90, 120		
Beamline	X06DA/SLS	PX1/ SOLEIL	PX1/ SOLEIL		
Wavelength (Å)	1.07210	0.97856	0.97856		
Resolution limits (Å)*	61.17-1.35 (1.43- 1 35)	37.02-1.55 (1.58- 1.55)	43.7-1.95 (2.0-1.95)		
Reflections: measured unique	2256301 303404	974517 106704	222807 52412		
Completeness (%)*	98.9 (95.2)	100 (100)	98.4 (99.4)		
R _{meas} (%)	7.6 (150.3)	5.6 (60.5)	6.4 (57.5)		
Mean I / σI*	17.3 (1.34)	21.6 (3.7)	13.0 (2.5)		
Multiplicity*	7.4 (6.8)	9.1 (9.3)	4.3 (4.2)		
CC _{1/2} *	100 (63.4)	99.9 (89.9)	99.9 (85.1)		
Wilson B factor	14.2	21.8	29.5		
Refinement					
Resolution (Å)	61.17-1.35	37.02-1.55	43.7-1.95		
R_{work}/R_{free} (%)†	14.6/ 17.6	15.1 / 18.1	18.7 / 23.9		
Nb reflections R _{work} /R _{free}	153851 / 7693	101249 / 5401	49818 / 2590		
CC(work) / CC(Free)	0.97 / 0.96	0.98 / 0.97	0.97 / 0.95		
-Protein -Sugar -Waters R.m.s.d. bond lengths	5935 / 17.5 NA 885 / 32.5 0.006	5878/ 22.2 216 / 28.0 917 / 34.0 0.015	5772 /33.0 238 / 43.9 708 / 38.4 0.015		
(A) R.m.s.d. bond angles (°)	1.38	1.89	1.73		
Ř.m.s.d. chiral (Å ³)	0.086	0.102	0.099		
Clashscore	3	1	1		
Ramachandran plot (%) -Allowed regions -Favored regions -Outliers PDB Code	99.2 96.5 6	99.7 96.7 2 67112	100 97.2 0		

 Table SIV.
 Statistics on Data Collection and Refinement

* Values in parentheses correspond to high resolution shell in data collections.

SUPPLEMENTARY REFERENCES

Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., *et al.* (2014). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res *42*, D699-704.

Kunzler, M., Bleuler-Martinez, S., Butschi, A., Garbani, M., Luthy, P., Hengartner, M.O., and Aebi, M. (2010). Biotoxicity assays for fruiting body lectins and other cytoplasmic proteins. Methods Enzymol *480*, 141-150.

Muraguchi, H., Umezawa, K., Niikura, M., Yoshida, M., Kozaki, T., Ishii, K., Sakai, K., Shimizu, M., Nakahori, K., Sakamoto, Y., *et al.* (2015). Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea. PLoS One *10*, e0141586.