SUPPLEMENTAL INFORMATION

Structural and functional insights into methyl fucosidases from glycoside hydrolase family 139

Zak McIver^{1,2,3#}, Alicia Moraleda-Montoya^{4,#}, Zongjia Chen⁵, Ruwan Epa⁵ David Starns⁶, Matthew Davy⁷, Mikel García-Alija⁴, Arnaud Basle⁸, Mario Schubert⁹, Didier Ndeh¹⁰, Beatriz Trastoy^{4,11}, Spencer J. Williams⁵, Marcelo E. Guerin¹², and Alan Cartmell^{1,2,3*}

¹Department of Biology, University of York, York, YO10 5DD, United Kingdom,

²York Structural Biology Laboratory, ³York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom

³York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom,
 ⁴Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain.

⁵School of Chemistry and Bio21, Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria3010, Australia

⁶School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds ⁷ Department of Chemistry, University of York, York, YO10 5DD, United Kingdom,

⁸Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

⁹ FU Berlin, Department of Biology, Chemistry and Pharmacy, Takustr. 3, 14195 Berlin, Germany
 ¹⁰ School of Life Sciences, E109, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, University of Dundee

¹¹Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.

¹²Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Catalonia, Spain.

[#]These authors contributed equally

*To whom correspondence should be addressed: alan.cartmell@york.ac.uk

Synthesis of 4-Nitrophenyl-2-O-methyl-α-L-fucopyranoside

4-Nitrophenyl 3,4-*O*-isopropylidene-α-L-fucopyranoside (1)

A mixture of 4-nitrophenyl 3,4-*O*-isopropylidene- α -L-fucoside (320 mg, 1.1 mmol), *p*-TsOH (5 mg, 0.03 mmol) and 2,2-dimethoxypropane (420 mg, 4.0 mmol) in DMF (5 mL) was stirred under a N₂ atmosphere at 80 °C for 1 h. The solvent was removed and the residue was purified by flash chromatography (n-hexane:EtOAc=4:1) to give the product as an oil (332 mg, 91%).

$[\alpha]_{\rm D} = -199.82 \ (c = 1.00, \, {\rm CHCl}_3)$

¹H ¹H NMR (500 MHz, CDCl₃) δ 1.30 (d, J = 6.6 Hz, 3H), 1.38 (s, 3H), 1.55 (s, 3H), 4.02 (dd, J = 6.6, 3.6 Hz, 1H), 4.14 (dd, J = 6.0, 2.3 Hz, 1H), 4.20 (qd, J = 6.6, 2.2 Hz, 1H), 4.40 (t, J = 6.3 Hz, 1H), 5.61 (d, J = 3.6 Hz, 1H), 7.18 (d, J = 9.3 Hz, 2H), 8.20 (d, J = 9.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 16.4, 26.0, 27.9, 65.8, 69.3, 75.4, 75.8, 96.7, 109.8, 116.6, 126.0, 142.8, 161.6.

HRMS (ESI⁺) calcd for $C_{15}H_{19}CINO_7 [M+C1]^-$ 360.0850. Found 360.0854.

4-Nitrophenyl 3,4-*O*-isopropylidene-2-*O*-methyl-α-L-fucopyranoside (2a)

A mixture of 1 (150 mg, 0.46 mmol) and Ag₂O (871 mg, 3.76 mmol) in CH₃I (1 mL) was stirred at room temperature for 8 h (***). The mixture was filtered through Celite, and the Celite was washed thoroughly with EtOAc. The residue was purified by chromatography (n-hexane:EtOAc = 5:1) to give the product as a white crystalline solid (92 mg, 58%).

 $[\alpha]_{\rm D} = -162.2 \ (c = 1.00, \text{CHCl}_3)$

^TH NMR (500 MHz, CDCl₃) δ 1.31 (d, J = 6.6 Hz, 3H), 1.38 (s, 3H), 1.58 (s, 3H), 3.55 (dd, J = 7.6, 3.4 Hz, 1H), 3.57 (s, 3H), 4.05–4.14 (m, 2H), 4.43 (dd, J = 7.5, 5.6 Hz, 1H), 5.66 (d, J = 3.4 Hz, 1H), 7.19 (d, J = 9.2 Hz, 2H), 8.20 (d, J = 9.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 16.4, 26.4, 28.4, 59.3, 65.0, 75.5, 75.8, 78.6, 95.3, 109.4, 116.5, 125.9, 142.7, 161.8.

HRMS (ESI⁺) calcd for $C_{16}H_{22}NO_7 [M+H]^+$ 340.1391. Found 340.1385.

*** Caution! Prolonging the reaction beyond 16 hours will result in rearrangement to the methyl 2-O-nitrophenyl-fucoside **2b** (9% yield by HPLC separation).

Methyl 3,4-*O***-isopropylidene-2-(4-nitrophenyl)-** α **-L-fucopyranoside (2b)** [α]_D = -122.5 (c = 0.50, CHCl₃)

¹H NMR (600 MHz, CDCl₃) δ 1.34 (s, 3H), 1.45 (d, J = 6.6 Hz, 3H), 1.53 (s, 3H), 3.46 (s, 3H), 3.93 (qd, J = 6.5, 2.2 Hz, 1H), 4.10 (dd, J = 5.6, 2.2 Hz, 1H), 4.25–4.21 (m, 1H), 4.30–4.27 (m, 1H), 4.31 (d, J = 7.9 Hz, 1H), 7.11 (d, J = 9.3 Hz, 2H), 8.14 (d, J = 9.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 16.5, 26.1, 28.1, 57.0, 69.1, 76.5, 78.2, 80.7, 102.4, 110.2, 116.5, 125.7, 141.9, 164.3.

HRMS (ESI⁺) calcd for $C_{16}H_{22}NO_7 [M+H]^+$ 340.1391. Found 340.1390.

4-Nitrophenyl 2-*O*-methyl-α-L-fucopyranoside (3)

A solution of **2a** (25 mg, 0.074 mmol) in CH₂Cl₂ (2 mL) was cooled in an ice bath, and TFA (19 μ L, 0.26 mmol) was added under a N₂ atmosphere. The mixture was warmed to room temperature and stirred for 4 h. The reaction was neutralized with NEt₃, and the solvent was removed under reduced pressure. The residue was purified by chromatography (n-hexane:EtOAc = 1:4) to give the product as a white foam (20 mg, 91%).

 $[\alpha]_{\rm D} = -98.9 \ (c = 0.88, \text{CHCl}_3)$

¹H NMR (500 MHz, CDCl₃) δ 1.27 (d, J = 6.6 Hz, 3H), 2.49 (s, 1H), 2.71 (d, J = 3.0 Hz, 1H), 3.50 (s, 3H), 3.72 (dd, J = 9.8, 3.4 Hz, 1H), 3.90 (s, 1H), 3.97 (q, J = 6.6 Hz, 1H), 4.16 (dt, J = 9.8, 3.0 Hz, 1H), 5.78 (d, J = 3.4 Hz, 1H), 7.21 (d, J = 9.2 Hz, 2H), 8.22 (d, J = 9.2 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 16.2, 58.5, 67.4, 69.5, 71.2, 77.6, 94.6, 116.6, 126.0, 142.8, 161.9. HRMS (ESI⁺) calcd for $C_{13}H_{18}NO_7$ [M+H]⁺ 300.1078. Found 300.1073.

4-Nitrophenyl 3,4-*O*-isopropylidene-α-L-fucopyranoside (1) ¹H NMR ^{21-fuc-proton}

Methyl 3,4-O-isopropylidene-2-(4-nitrophenyl)-α-L-fucopyranoside (2b) ¹H NMR ¹²090

Supplementary Figure S1. Chemical shift assignment of the ¹H 1D spectra of $\Delta 0984$ oligo before and after enzymatic treatment. (a) Chemical structure of $\Delta 0984$ oligo and the products of the enzymatic cleavage with used nomenclature. (b) ¹H 1D spectra of $\Delta 0984$ oligo before (top) and after enzymatic treatment (bottom) with assignment. Capital letters denote the building block, numbers proton number and in case of a free reducing end α and β denotes the anomer, e.g. F'1 α stands for H1 of the free fucose α anomer.

Supplementary Figure S2. NMR spectra confirm the released carbohydrate is free 2MeFuc. (a) ¹H-¹³C HSQC of the released carbohydrate with assignments. (b) Same spectrum as before (blue) overlayed on a ¹H-¹³C HMQC spectrum of a reference sample of 2MeFuc (red) showing identical peak positions.

Supplementary Figure S3. Electron density maps of the GH139 active sites. Weighted 2Fobs-Fc electron density maps of the active site residues of BT0984, left (2.7 Å), and SDT91673.1. right (2.05 Å). Both maps are contoured at 1σ .

Moiety	H1	H2	H3	H4	H4'	H5	H6/H5'	H7	C1	C2	C3	C4	C5	C6	C7	
	5.294	3.954	_	4.155	3,876	3.828	3.558	_	104.4	80.1	80.8	75.7	71.9	—	_	this work
B-Ani ª	5.233	4.158	_	4.348	3.935	3.986	3.655	_	112.5	n.d.	n.d.	77.3	73.1	_	—	Vidal ^b
	5.12	n.d.	—	4.23	3.81	4.08	3.53	_	112.5	n.d.	n.d.	76.9	73.3	—	—	Rodriguez⁰
	5.09	4.12	_	4.16	4.01	3.72	3.72	_	110.9	78.0	80.8	75.0	65.0	_	_	Ishi d
α-Api ª	5.342	4.089	—	3.792	3.527	3.986	3.989	_	99.0	76.0	79.2	75.6	72.5	—	—	this work
	5.11	4.12	_	4.16	4.12	3.72	3.72	_	104.7	73.2	78.4	75.1	65.9	—	—	Ishi ª
	4.878	4.222	3.938	3.626	—	3.783	1.325	_	102.5	69.3	78.1	72.9	71.3	19.5	—	this work
Rha	4.87	4.19	3.89	3.57	—	3.75	1.31	_	102.5	69.4	78.8	72.7	71.2	19.5	—	Glushka °
	4.92	4.23	3.50	3.64	_	3.95	1.34	_	102.7	69.3	77.8	72.7	74.3	19.4		Rodriguez⁰
	5.373	4.424	—	4.730	_	1.190	_	_	100.0	90.2	85.6	81.4	16.2	177.0		this work
Aceric acid	5.38	4.39	—	4.84	_	1.19	_	_	100.4	90.4	n.d.	80.5	15.3	n.d.	_	Glushka °
	5.41	4.38	—	4.74	_	1.17	_	_	98.9	89.7	85.2	81.2	16.1	n.d.		Rodriguez⁰
Gal	4.649	3.778	3.872	3.867	—	3.717	3.794	_	105.0	75.5	72.0	77.3	78.0	63.5	—	this work
	5.738	3.480	4.049	3.842	—	4.318	1.229	3.496	97.4	80.1	70.8	74.7	69.1	18.2	59.9	this work
2MFuc	5.65	3.45	4.00	3.81	_	4.37	1.17	3.47	97.8	80.1	70.9	74.6	69.0	18.1	60.0	Glushka ^f
	5.732	3.48	4.10	n.d.	—	4.395	1.24	3.47	97.5	80.0	70.3	n.d.	68.8	18.1		Rodriguez

Table S1 Observed chemical shifts of the $\Delta 0984$ oligo measured at 298 K in 10 mM HEPES, with 150 mM NaCl, buffer referenced to DSS in comparison with related structures reported earlier (1-4).

^a nomenclature of apiose: C3' is named in our table C5 and the corresponding protons H5 and H5'

- ^b Vidal et al. reported the chemical shifts of a 12-mer including a Gal-β1,2-Ace*f* (OAc)-β1,3-Rha-β1,3'-Api*f*-β1,2-Gal side chain; for better comparison 1.2 ppm was added to the reported ¹³C values and 0.023 ppm to the ¹H chemical shifts
- ^c for better comparison reported ¹³C chemical shifts were corrected by + 2.3 ppm and ¹H chemical shifts by + 0.12
- ^d Ishii et al. reported chemical shifts of free methyl apiofuranosides, to the reported ¹³C values 0.7 ppm was added, to ¹H chemical shifts 0.1 ppm was added.
- ^e for better comparison 2 ppm was added to the reported ¹³C values.
- ^f for better comparison 0.2 ppm was added to the reported ¹³C values.

Moiety	H1	H2	H3	H4	H4'	H5	H6/ H5'	H7	C1	C2	C3	C4	C5	C6	
	5.308	3.974	_	4.166	3.893	3.844	n.d.	_	104.6	80.1	80.4	75.8	72.0	_	this work
β-Apiª	5.233	4.158	_	4.348	3.935	3.986	3.655	_	112.5	n.d.	n.d.	77.3	73.1	_	Vidal ^b
	5.12	n.d.	_	4.23	3.81	4.08	3.53	_	112.5	n.d.	n.d.	76.9	73.3	_	Rodriguez⁰
	5.09	4.12	_	4.16	4.01	3.72	3.72	_	110.9	78.0	80.8	75.0	65.0	—	Ishi d
α-Apiª	5.364	4.089	_	4.002	4.002	n.d.	n.d.	_	99.0	74.4	79.2	75.7	n.d.	—	this work
50 F (p)	5.11	4.12	_	4.16	4.12	3.72	3.72	_	104.7	73.2	78.4	75.1	65.9	—	Ishi d
	4.886	4.228	3.935	3.642	—	3.793	1.349	_	102.6	69.4	78.5	72.8	71.3	19.6	this work
Rha	4.87	4.19	3.89	3.57	—	3.75	1.31	—	102.5	69.4	78.8	72.7	71.2	19.5	Glushka ª
	4.92	4.23	3.50	3.64	—	3.95	1.34	—	102.7	69.3	77.8	72.7	74.3	19.4	Rodriguez⁰
	4.913	4.246	3.96	3.629	_	3.829	1.356	_	102.7	69.8	n.d.	n.d.	n.d.	19.7	Vidal ^b
	5.396	4.331	_	4.809	_	1.190	_	_	100.3	91.0	86.2	81.2	15.8	_	this work
Aceric	5.38	4.39	_	4.84	_	1.19	_	_	100.4	90.4	n.d.	80.5	15.3	n.d.	Glushka ^e
acid	5.41	4.38	_	4.74	_	1.17	_	_	98.9	89.7	85.2	81.2	16.1	n.d.	Rodriguez⁰
	5.412	4.329	_	4.809	_	1.193	_	_	100.9	91.1	n.d.	n.d.	15.6	n.d.	Vidal ^b
Gal	4.506	3.636	3.712	3.932	_	3.797	3.793	_	106.9	73.3	78.2	71.2	74.8	63.6	this work
(terminal)	4.503	3.633	3.669	3.934	_	n.d.	3.793	_	107.1	73.2	75.3	71.2	n.d.	63.7	Vidal ^b
free β- 2MeFuc	4.608	3.187	3.687	3.754	_	3.790	1.254	n.d.	98.8	84.2	75.2	74.2	73.6	18.2	this work
free α- 2MeFuc	5.454	3.479	3.896	3.812		4.193	1.220	n.d.	92.2	80.1	71.3	74.6	68.8	18.2	this work

Table S2 Observed chemical shifts of oligo after enzyme treatment, plus released monosaccharide referenced to DSS in comparison with related structures reported earlier (1-4).

^a nomenclature of apiose: C3' is named in our table C5 and the corresponding protons H5 and H5'

^b Vidal et al. reported the chemical shifts of a 12-mer including a Gal-β1,2-Ace*f* (OAc)-β1,3-Rha-β1,3'-Api*f*-β1,2-Gal side chain; for better comparison 1.2 ppm was added to the reported ¹³C values and 0.023 ppm to the ¹H chemical shifts

^c for better comparison reported ¹³C chemical shifts were corrected by + 2.3 ppm and ¹H chemical shifts by + 0.12

^d Ishii et al. reported chemical shifts of free methyl apiofuranosides, to the reported ¹³C values 0.7 ppm was added, to ¹H chemical shifts 0.1 ppm was added.

	BT0984 ^{GH139}	SDT091673 GH139
Data collection		
Beamline	iO4-1 (DLS)	i24 (DLS)
Wavelength (Å)	0.98	0.999
Resolution range (Å)	47.43 – 2.70	76.74 - 2.05
	(2.76 – 2.70)	(2.123 - 2.05)
Space group	P2 ₁ 2 ₁ 2 ₁	P 6₅22
Unit cell		
a, b, c (Å)	101.20, 138.22, 195.53	209.45 209.45 143.96
a, b, g (°)	90, 90, 90	90.00 90.00 120.00
Total reflections	251340	4209044 (681959)
	(15118)	
Unique reflections	75053 (4450)	5422 (4518)
Multiplicity	3.3 (3.4)	39.5 (24.4)
Completeness (%)	98.9 (99.5)	99.96 (99.92)
Mean I/sigma(I)	10.4 (1.3)	71.7 (4)
Wilson B-factor (Å ²)	59.22	26.62
Rmerge	0.089 (1.050)	0.050 (0.773)
Rmeas	0.105 (1.246)	0.051 (0.789)
CC1/2	0.997 (0.502)	1 (0.887)
Refinement		
R-work/ R-free	0.22/0.26	0.18/0.19
RMS(bonds) (A)	0.005	0.01
RMS(angles) (°)	1.40	1.03
Ramachandran favored (%)	94.33	97.37
Ramachandran allowed (%)	99.93	99.87
Ramachandran outliers (%)	0.07	0.13
Rotamer outliers (%)	2.85	0.31
Clashscore	4.72	1.96
Average B-factor (A ²)	75.46	33.45
macromolecules	70.6/80.31	32.74
ligands	0	0
solvent	42.80	39.54
PDR code	9HYQ	ЭНМВ

Table S3. X-ray data collection and refinement statisticsStatistics for the highest-resolution shell are shown in parentheses

Table S4 Melting temperatures of GH139 enzymes and their mutants.

All melting temperatures were performed in 10 mM MOPS pH 7.0 with 150 mM NaCl deploying 5 μM protein unless stated.

Enzyme	Melting point	Confidence interval				
Run 1						
BT_0984_WT	54.38	44.24 to 50.71				
W162A	54.78	54.59 to 55.55				
W403A	51.48	51.02 to 52.39				
Q411A	55.01	54.03 to 56.05				
N412A	54.22	53.61 to 55.23				
E472A	56.56	55.78 to 57.29				
E472Q	55.37	55.07 to 55.83				
W490A	56.64	56.13 to 57.11				
E561A	58.62	57.18 to 59.25				
E561Q	57.21	55.22 to 60.26				
N639A	56.07	55.54 to 56.99				
E641A	54.33	53.10 to 55.66				
E641Q	56.00	54.58 to 56.95				
W683A	47.48	45.79 to 49.92				
	Run2					
SDT	59.29	59.18 to 59.40				
SDT T115Q	41.1	40.83 to 41.36				
Q411A + N412A	53.96	53.45 to 54.81				
Q411A + E562Q	58.91	59.17 to 59.74				
N412A + E562Q	56.55	56.71 to 58.48				
Q411A + N412A + E562Q	56.89	57.06 to 58.16				

		% of the sin	nulation time
Ligand Atom	AA residue	Simulation 1	Simulation 1
Hemi acetal O	T409	11.30	3.00
Hemi acetal O	Q411	-	3.30
Hemi acetal O	N412	72.00	67.00
Hemi acetal O	Q461	4.90	2.20
Hemi acetal O	H2O	74.80	96.10
C1-0	Q461	1.60	1.90
C1-O	Q461	25.80	-
C1-0	H2O	99.20	99.80
C1-OH	E561	86.60	76.80
C1-OH	E561	36.80	73.80
C1-OH	H2O	8.70	16.90
C2-O	N639	1.40	14.40
C2-O	H2O	95.40	83.20
C3-O	W683	93.30	90.20
C3-O	Y722	6.00	5.60
C3-O	H2O	72.30	82.50
C3-OH	H2O	97.10	96.00
C4-0	N412	99.90	98.30
C4-O	W683	94.30	93.40
C4-O	H2O	13.60	11.30
C4-OH	D723	83.40	100.00
C4-OH	D723	94.80	77.30

Table S5. Total hydrogen bond interactions between 2-methoxy-α-fucose and BT0984 during molecular dynamics simulations.

Table S6. Hydrogen bond occupancy at subsite -1 residues of BT0984 in complex with 2-methoxy- α -fucose.

		% of the sin	nulation time
AA residue	Ligand atom	Simulation 1	Simulation 2
D723	C4-OH	83.40%	100.00%
D723	C4-OH	94.80%	77.30%
E561	C1-OH	86.60%	76.81%
E561	C1-OH	36.80%	73.80%
N412	Hemi acetal O	72.00%	67.00%
N412	C4-0	99.90%	98.30%
N729		0.00%	0.00%
Q411	C2-O	0%	3.30%
W683	C3-O	93.30%	90.20%
W683	C4-0	94.30%	93.40%

	Binding free energy	Van der Waal contribution	Electrostatic contribution
Simulation 1	-18.05	-19.13	-43.80
Simulation 2	-16.17	-20.34	-40.81

Table S7. Binding free energy (ΔG_{bind}) of 2-methoxy- α -fucose to BT0984 calculated by MM-GBSA (values in kcal/mol).

Table S8	. Mutant	primer	table
----------	----------	--------	-------

Mutant primer	Primer sequence 5' – 3'
BT0984 W162A F	TCC TAT AAG GCC
	GCTCCTCCAAAAGGAACGATGACG
BT0984 W162A R	TGG AGG AGC GGC
	CTTATAGGAACATTGCTGCCCCTC
BT0984 W404A F	TAC CGA AAG GCC
	GGAGGAGGAACGATGACTGCACAG
BT0984 W403A R	GCA TTC ACT GGC
	GACTACCGAAAGTGGGGAGGAGGA
BT0984 Q461A F	TTC TGT GAG GCC
	ATAGAAAACTTCGGCTTACCCAAT
BT0984 Q461A R	GTT TTC TAT GGC
	CTCACAGAAGCAGGCTCCCTCGTG
BT0984 E472A F	AAT CCC GCA GCC
	TATGGTTTCAAACGTCCGGCTTGG
BT0984 E472A R	GAA ACC ATA GGC
	TGCGGGATTGGGTAAGCCGAAGTT
BT0984 E472Q F	AAT CCC GCA CAG
	TATGGTTTCAAACGTCCGGCTTGG
BT0984 E472Q R	GAA ACC ATA CTG
	TGCGGGATTGGGTAAGCCGAAGTT
BT0984 W490A F	TAC AAT GCG GCC
	CTGGAATATGAATGGGATACTATT
BT0984 W490A R	ATA TTC CAG GGC
	CGCATTGTATTCCAGTCCTTTGTC
BT0984 E561A F	TCT GCC TGC GCC
	ACTTACAAGATGACCAACAACGCC
BT0984 E561A R	CTT GTA AGT GGC
	GCAGGCAGAGCCGGGGAACAGTAT
BT0984 E561Q F	TCT GCC TGC CAG
	ACTTACAAGATGACCAACAACGCC
BT0984 E561Q R	CTT GTA AGT CTG
	GCAGGCAGAGCCGGGGAACAGTAT
BT0984 N639A F	CGA ATC AAC GCC
	ATAGAGACACCACAACTCTACCCG
BT0984_N639A_R	TGT CTC TAT GGC
	GTTGATTCGTTCCCAGCTTTTGGC
BT0984_E641A_F	AAC AAT ATA GCC
	ACACCACAACTCTACCCGGTTTTT
BT0984_E641A_R	TTG TGG TGT GGC
	TATATTGTTGATTCGTTCCCAGCT
BT0984_E641Q_F	AAC AAT ATA CAG
	ACACCACAACTCTACCCGGTTTTT
BT0984_E641Q_R	TTG TGG TGT CTG
	TATATTGTTGATTCGTTCCCAGCT
BT0984_W683A_F	CAT ACC GGA GCC
	AAGCAAGACAACATCTGGGCAGCC
BT0984_W683A	GTC TTG CTT GGC
	TCCGGTATGGGAGCGGAATTTGAG
BT0984_N412A_F	ACT GCA CAG GCC
	CAGCGTCTTGTCTACTGGCCG
BT0984 N412A	AAG ACG CTG GGC

	CTGTGCAGTCATCGTTCCTCC
BT0984_Q411A_F	ATG ACT GCA GCC
	AATCAGCGTCTTGTCTACTGG
BT0984_Q411A_R	ACG CTG ATT GGC
	TGCAGTCATCGTTCCTCCTCC
BT0984_Q411A/N412A_F	ATG ACT GCA GCC GCC CAG CGT CTT GTC
	TAC TGG
BT0984_Q411A/N412A_R	ACG CTG GGC GGC TGC AGT CAT CGT TCC
	TCC TCC
SDT_T551E_F	CTGCTCAGAGCCTGGAGACCTACCAGTCCC
SDT_T551E_R	GGGACTGGTAGGTCTCCAGGCTCTGAGCAG

- 1. Glushka, J. N., Terrell, M., York, W. S., O'Neill, M. A., Gucwa, A., Darvill, A. G. *et al.* (2003) Primary structure of the 2-O-methyl-alpha-L-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II Carbohydr Res **338**, 341-352 10.1016/s0008-6215(02)00461-5
- 2. Ishii, T., Yanagisawa, M (1998) Synthesis, separation and NMR spectral analysis of methyl apiofuranosides Carbohydrate Research **313**, 189-192 <u>https://doi.org/10.1016/S0008-6215(98)00262-6</u>
- 3. Rodriguez-Carvajal, M. A., Herve du Penhoat, C., Mazeau, K., Doco, T., andPerez, S. (2003) The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modeling and NMR investigation Carbohydr Res **338**, 651-671 10.1016/s0008-6215(03)00003-x
- 4. Vidal, S., Doco, T., Williams, P., Pellerin, P., York, W. S., O'Neill, M. A. *et al.* (2000) Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain Carbohydr Res **326**, 277-294 10.1016/s0008-6215(00)00036-7