## **Supplemental Material**

## Unambiguous identification of glucose-induced glycation in mAbs and other proteins by NMR spectroscopy

Jennifer E. Moises, Christof Regl, Arthur Hinterholzer, Christian G. Huber, and Mario Schubert



**Figure S1. Annotation of glycated aprotinin isoforms by HPLC-MS analysis after 1 week incubation at 40°C with 500 mmol'L<sup>-1</sup> D-glucose. A)** Sequence of aprotinin with potential glycation sites indicated. The four containing Lys residues are color-coded in cyan, the N-terminus in pink. In addition cleavage sites of the protease legumain are indicated by red arrows. **B)** Annotation of aprotinin isoforms in a deconvoluted mass spectrum of intact aprotinin by HPLC-MS analysis. **C)** Schematic presentation of the glycated N-terminal peptide with some characteristic fragmentations. D) The glycated N-terminal peptide

was fragmented employing higher-energy collisional induced dissociation, resulting in fragmentation of the peptide backbone (b- and y-ions) as well as in the Amadori-product (–Hexose).



Figure S2. Investigation of glycation of the therapeutic mAb adalimumab by 2D  $^{1}$ H- $^{13}$ C HSQC spectra. A)  $^{1}$ H- $^{13}$ C HSQC spectra of the untreated adalimumab, at a concentration of 0.22 mM, showing typical signals of glycosylation. The regions of most characteristic glycation signals indicated by red dotted circles are empty. The spectrum was recorded with 140 transients, a recycle delay of 2 sec and 1024 × 256 points. B)  $^{1}$ H- $^{13}$ C HSQC spectra of the glycated adalimumab, measured with 140 transients, a recycle delay of 2 sec and 1024 × 256 points. B)  $^{1}$ H- $^{13}$ C HSQC spectra of the glycated adalimumab, measured with 140 transients, a recycle delay of 2 sec and 1024 × 256 points.

|            | BSA   | Kaufmann<br>2016 <sup>a</sup> | Kapczynska<br>2011 <sup>b</sup> | Mossine 1994 <sup>c</sup> | Mossine 2009 <sup>d</sup> |  |
|------------|-------|-------------------------------|---------------------------------|---------------------------|---------------------------|--|
| α-furanose |       |                               |                                 |                           |                           |  |
| C1         | n.d   | 52.5                          | 55.1                            | 53.5                      | 46.2                      |  |
| C2         | 104.6 | 104.5                         | n.r                             | 104.5                     | 104.7                     |  |
| C3         | 85.1  | 85.1                          | 83.4                            | 85.2                      | 85.1                      |  |
| C4         | 78.7  | 78.7                          | 78.4                            | 78.7                      | 78.9                      |  |
| C5         | 85.3  | 85.3                          | 85                              | 85.0                      | 85.1                      |  |
| C6         | 63.5  | 63.6                          | 63.4                            | 63.4                      | 63.7                      |  |
| H1         | n.d   | 3.15                          | n.r                             | n.r                       | 3.26                      |  |
| H1'        | n.d   | 3.12                          | n.r                             | n.r                       | 3.26                      |  |
| Н3         | 4.20  | 4.02                          | n.r                             | n.r                       | 4.22                      |  |
| H4         | 4.02  | 3.84                          | n.r                             | n.r                       | 4.02                      |  |
| Н5         | 4.11  | 3.94                          | n.r                             | n.r                       | 4.12                      |  |
| Н6         | 3.82  | 3.66                          | n.r                             | n.r                       | 3.84                      |  |
| H6'        | 3.69  | 3.53                          | n.r                             | n.r                       | 3.71                      |  |
| β-furanose |       |                               |                                 |                           |                           |  |
| C1         | n.d   | 53.6                          | 53.7                            | 54.9                      | 47.3                      |  |
| C2         | 101.6 | 101.5                         | n.r                             | 101.5                     | 101.7                     |  |
| C3         | 80.7  | 80.6                          | 83.5                            | 80.5                      | 80.4                      |  |
| C4         | 76.9  | 76.8                          | 76.6                            | 76.8                      | 77.1                      |  |
| C5         | 83.8  | 83.6                          | 84.9                            | 83.5                      | 83.6                      |  |
| C6         | 64.6  | 64.6                          | 64.4                            | 64.5                      | 64.7                      |  |
| H1         | n.d   | 3.15                          | n.r                             | n.r                       | 3.24                      |  |
| H1'        | n.d   | 3.10                          | n.r                             | n.r                       | 3.24                      |  |
| Н3         | 4.02  | 3.86                          | n.r                             | n.r                       | 4.05                      |  |
| H4         | 4.11  | 3.92                          | n.r                             | n.r                       | 4.13                      |  |
| Н5         | 3.88  | 3.70                          | n.r                             | n.r                       | 3.89                      |  |
| Н6         | 3.79  | 3.62                          | n.r                             | n.r                       | 3.82                      |  |
| Н6'        | 3.68  | 3.49                          | n.r                             | n.r                       | 3.69                      |  |
| α-pyranose |       |                               |                                 |                           |                           |  |
| C1         | n.d   | 49.9                          | n.r                             | 51,6                      | 43.6                      |  |
| C2         | 98.9  | 99.0                          | n.r.                            | 98.7                      | 98.8                      |  |
| C3         | 73.2  | 73.0                          | n.r.                            | 74.3                      | 73.1                      |  |
| C4         | 74.5  | 74.8                          | n.r.                            | 73.0                      | 74.5                      |  |
| C5         | 68.5  | 68.7                          | n.r.                            | 68.1                      | 68.5                      |  |
| C6         | 65.4  | 65.8                          | n.r.                            | 65.2                      | 65.5                      |  |
| H1         | n.d   | 3.18                          | n.r                             | n.r                       | 3.36                      |  |
| H1'        | n.d   | 3.13                          | n.r                             | n.r                       | 3.31                      |  |
| Н3         | 3.89  | n.r.                          | n.r.                            | n.r.                      | 3.91                      |  |
| H4         | 3.89  | n.r.                          | n.r.                            | n.r.                      | 3.90                      |  |
| Н5         | 4.03  | n.r.                          | n.r.                            | n.r.                      | 4.04                      |  |

**Table S1.** Experimental chemical shifts of the two furanose forms and the two pyranose forms of the Amadori-product, observed in glycated model proteins in comparison to previously published data (1-4).

| Н6         | 3.89 | n.r. | n.r. | n.r. | 3.89 |
|------------|------|------|------|------|------|
| Н6'        | 3.69 | n.r. | n.r. | n.r. | 3.74 |
| β-pyranose |      |      |      |      |      |
| C1         | 55.6 | 54.5 | 55.6 | 55.5 | 48.0 |
| C2         | 98.2 | 98.0 | n.r  | 98.1 | 98.1 |
| C3         | 72.4 | 72.6 | 72.2 | 72.3 | 72.4 |
| C4         | 72.1 | 72.0 | 72.1 | 72.0 | 72.1 |
| C5         | 71.8 | 71.6 | 71.5 | 71.6 | 71.7 |
| C6         | 66.7 | 66.6 | 66.6 | 66.6 | 66.7 |
| H1         | 3.29 | 3.14 | n.r  | n.r  | 3.28 |
| H1'        | n.d  | 3.11 | n.r  | n.r  | 3.24 |
| Н3         | 3.75 | 3.57 | n.r  | n.r  | 3.75 |
| H4         | 3.89 | 3.71 | n.r  | n.r  | 3.91 |
| Н5         | 4.00 | 3.82 | n.r  | n.r  | 4.03 |
| H6         | 3.99 | 3.84 | n.r  | n.r  | 4.02 |
| H6'        | 3.76 | 3.58 | n.r  | n.r  | 3.78 |

<sup>a</sup> values of compound 5:  $N^{\alpha}$ -(1-deoxy-D-fructos-1-yl)-L-alanine, for comparison with our data (referenced to DSS) we added +2.5ppm to the values of Kaufmann referenced to TMS <sup>b</sup> values of the peptide H-Lys([<sup>13</sup>C<sub>6</sub>]Fru)-Ala-Ala-Phe-OH <sup>c</sup> values of compound 6 N<sup>c</sup>-(1-deoxy- D-fructos-1-yl)-N<sup>α</sup>-formyl-L-lysine. For comparison with our data referenced to DSS, we added +1.8ppm to the values of Mossine 1994, which were referenced to 1.4 dioxane <sup>d</sup> values of D-fructosamine hydrochloride

n.r not reported

n.d not detected

| Monoisotopic | Sum Intensity  | Relative  | Fractional | Annotation                     | Theoretical | Δррт  |
|--------------|----------------|-----------|------------|--------------------------------|-------------|-------|
| Mass [Da]    |                | Abundance | Abundance  |                                | mass [Da]   |       |
|              |                | [%]       | [%]        |                                |             |       |
| 6669.1625    | 172696428255.2 | 100.00    | 32.82      | Aprotinin + 1x Hexose          | 6669.0924   | 10.51 |
| 6507.1022    | 93949992967.0  | 54.40     | 17.86      | Aprotinin                      | 6507.0414   | 9.35  |
| 6831.2131    | 90401809577.2  | 52.35     | 17.18      | Aprotinin + 2x Hexose          | 6831.1471   | 9.66  |
| 6685.1503    | 25544755429.3  | 14.79     | 4.86       | Aprotinin + 1x Hexose + 1x     | 6685.0891   | 9.15  |
|              |                |           |            | Oxidation                      |             |       |
| 6993.2663    | 19495256402.9  | 11.29     | 3.71       | Aprotinin + 3x Hexose          | 6993.1999   | 9.50  |
| 6379.0365    | 12755863935.9  | 7.39      | 2.42       | Aprotinin - Gly-Ala (C-term)   | 6378.9828   | 8.42  |
| 6847.2075    | 12385226032.3  | 7.17      | 2.35       | Aprotinin + 2x Hexose + 1x     | 6847.1420   | 9.57  |
|              |                |           |            | Oxidation                      |             |       |
| 6523.0977    | 12225709620.2  | 7.08      | 2.32       | Aprotinin + 1x Oxidation       | 6523.0363   | 9.41  |
| 6541.0974    | 10775220491.7  | 6.24      | 2.05       | Aprotinin- Gly-Ala (C-term)    | 6541.0357   | 9.44  |
|              |                |           |            | + 1x Hexose                    |             |       |
| 6598.1109    | 10709377190.8  | 6.20      | 2.04       | Aprotinin- Ala (C-term) + 1x   | 6598.0571   | 8.15  |
|              |                |           |            | Hexose                         |             |       |
| 6732.1560    | 9999571824.5   | 5.79      | 1.90       | -                              | -           | -     |
| 6436.0458    | 8624314019.3   | 4.99      | 1.64       | Aprotinin - Ala (C-term)       | 6436.0043   | 6.45  |
| 6416.0056    | 6017697473.6   | 3.48      | 1.14       | Aprotinin- Arg-Pro (N-term)    | 6415.9404   | 10.17 |
|              |                |           |            | + 1x Hexose                    |             |       |
| 6253.9404    | 5711987647.1   | 3.31      | 1.09       | Aprotinin - Arg-Pro (N-term)   | 6253.8875   | 8.45  |
| 6894.2119    | 5033640037.9   | 2.91      | 0.96       | -                              | -           | -     |
| 6760.1734    | 4186437039.6   | 2.42      | 0.80       | Aprotinin - Ala (C-term) + 2x  | 6760.1099   | 9.38  |
|              |                |           |            | Hexose                         |             |       |
| 6703.1629    | 3676918846.3   | 2.13      | 0.70       | Aprotinin - Gly-Ala (C-term)   | 6703.0885   | 11.11 |
|              |                |           |            | + 2x Hexose                    |             |       |
| 6570.0954    | 3350788190.9   | 1.94      | 0.64       | -                              | -           | -     |
| 6653.1488    | 3150805619.7   | 1.82      | 0.60       | -                              | -           | -     |
| 6814.2078    | 2577099206.9   | 1.49      | 0.49       | -                              | -           | -     |
| 6614.1191    | 2248264300.6   | 1.30      | 0.43       | Aprotinin - Ala (C-term) + 1x  | 6614.0520   | 10.15 |
|              |                |           |            | Hexose + 1x Oxidation          |             |       |
| 6578.0955    | 1979094471.2   | 1.15      | 0.38       | Aprotinin - Arg-Pro (N-term)   | 6577.9932   | 15.55 |
|              |                |           |            | + 2x Hexose                    |             |       |
| 6395.0436    | 1829485819.4   | 1.06      | 0.35       | Aprotinin - Gly-Ala (C-term)   | 6394.9777   | 10.29 |
|              |                |           |            | + 1x Oxidation                 |             |       |
| 6711.1793    | 1353718361.1   | 0.78      | 0.26       | Aprotinin $+ 1x$ Hexose $+ 1x$ | 6711.1048   | 11.10 |
|              |                |           |            | Acetylation                    |             |       |
| 6557.1033    | 1271475177.6   | 0.74      | 0.24       | Aprotinin- Gly-Ala (C-term)    | 6557.0306   | 11.09 |
|              |                |           |            | + 1x Hexose + 1x Oxidation     |             |       |
| 7009.2725    | 1132381559.0   | 0.66      | 0.22       | Aprotinin $+ 3x$ Hexose $+ 1x$ | 7009.1948   | 11.09 |
|              |                |           |            | Oxidation                      |             |       |
| 6626.1411    | 1119412682.1   | 0.65      | 0.21       | -                              | -           | -     |
| 6452.0585    | 941385845.5    | 0.55      | 0.18       | Aprotinin - Ala (C-term) + 1x  | 6451.9992   | 9.19  |
|              |                |           |            | Oxidation                      |             |       |
| 6491.0814    | 380246748.0    | 0.22      | 0.07       | -                              | -           | -     |
| 6705.1325    | 301972329.0    | 0.17      | 0.06       | -                              | -           | -     |
| 7155.3360    | 297838445.4    | 0.17      | 0.06       | Aprotinin + 4x Hexose          | 7155.2527   | 11.64 |

**Table S2:** Annotation of aprotinin isoforms in a deconvoluted mass spectra of intact aprotinin by HPLC-MS analysis after 1 week stressing at 40°C with 500 mmol  $L^{-1}$  D-glucose.

| Protein   | Multiplicity    | Reference<br>signal for<br>integration | <sup>13</sup> C/ <sup>1</sup> H resonances<br>(ppm) | Volume                | Number of<br>residues in<br>sequence | Normalized<br>volume per<br>proton |
|-----------|-----------------|----------------------------------------|-----------------------------------------------------|-----------------------|--------------------------------------|------------------------------------|
| BSA       | СН              | Ser 109 Cα-Hα <sup>a</sup>             | 56.6/4.71                                           | 1.18 10 <sup>8</sup>  | 1                                    | 1.18 10 <sup>8</sup>               |
|           | CH <sub>2</sub> | Arg Cδ-Hδ                              | 27.4/1.65                                           | -4.38 10 <sup>8</sup> | 23                                   | 9.53 10 <sup>7</sup>               |
| Lysozym   | СН              | Thr 69 Cα-Hα <sup>a</sup>              | 60.1/4.60                                           | 3.93 10 <sup>8</sup>  | 1                                    | 3.93 10 <sup>8</sup>               |
| Aprotinin | СН              | Phe Cα-Hα                              | 57.6/4.63                                           | 7.81 10 <sup>10</sup> | 4                                    | 1.95 10 <sup>10</sup>              |
| Rituximab | CH <sub>2</sub> | Glu Cγ-Hγ                              | 36.4/2.30                                           | -2.78 10 <sup>9</sup> | 62 <sup>b</sup>                      | -4-48 10 <sup>7</sup>              |
| HSA       | СН              | Ile Сβ-Нβ                              | 38.9/1.90                                           | 3.89 10 <sup>8</sup>  | 9                                    | 4.33 10 <sup>7</sup>               |
|           | $CH_2$          | Gly Cα-Hα <sup>a</sup>                 | 45.2/3.97                                           | 2.20 10 <sup>9</sup>  | 13                                   | 8.46 10 <sup>7</sup>               |
| Bromalein | СН              | Ile Сβ-Нβ                              | 39.1/1.88                                           | 1,94 10 <sup>10</sup> | 20                                   | 9,70 10 <sup>8</sup>               |
|           | CH <sub>2</sub> | Gly Ca-Ha                              | 45.2/4.01                                           | 6.62 10 <sup>9</sup>  | 28                                   | 1.18 10 <sup>8</sup>               |

**Table S3.** Reference Signals for the quantification of glycation.

<sup>a</sup> these residues are followed by a proline and all found at a characteristic region after Wishart et al 1995 (5) <sup>b</sup> within the sequences of two heavy chains and two light chains

|        | BSA       | Aprotinin<br>set 1 | Aprotinin<br>set 2 | Lysozyme | Rituximab | HSA      | Bromelain |
|--------|-----------|--------------------|--------------------|----------|-----------|----------|-----------|
| С3-Н3  | 1.10E+09  | n.i.               | 3.44E+09           | 1.37E+08 | n.i.      | 9.56E+08 | 1.33E+08  |
| С4-Н4  | 1.08E+09  | 4.69E+09           | 5.44E+09           | 1.37E+08 | n.i.      | 3.07E+08 | n.i.      |
| С5-Н5  | 1.01E+09  | 4.86E+09           | 4.29E+09           | 1.18E+08 | n.i.      | 7.51E+07 | n.i.      |
| С6-Н6  | -6.93E+08 | n.i.               | n.i.               | n.i.     | -8.91E+07 | 1.07E+08 | 1.11E+08  |
| С6-Н6' | -7.37E+08 | n.i.               | n.i.               | n.i.     | -9.23E+07 | 1.06E+08 | 1.34E+08  |

Table S4. Integrated volumes of the  $\beta$ -pyranose form of the Amadori product

n.i. not integrable

Table S5. Percentage of glycation in a molecule calculated with the values of Table S3 and S4

|               | BSA  | Lysozyme | Aprotinin<br>set 1 | Aprotinin<br>set 2 | Rituximab | HSA  | Bromelain |
|---------------|------|----------|--------------------|--------------------|-----------|------|-----------|
| С3-Н3         | 9.32 | 0.35     | n.i.               | 0.17               | n.i       | 1.66 | 0.51      |
| С4-Н4         | 9.15 | 0.35     | 0.23               | 0.27               | n.i       | n.i  | n.i       |
| С5-Н5         | 8.56 | 0.30     | 0.24               | 0.21               | n.i       | 1.82 | n.i       |
| С6-Н6         | 7.27 | n.i      | n.i                | n.i                | 3.97      | 1.26 | 0.34      |
| С6-Н6'        | 7.73 | n.i      | n.i                | n.i                | 4.12      | 1.25 | 0.41      |
| On<br>average | 8.41 | 0.33     | 0.23               | 0.21               | 4.05      | 1.50 | 0.42      |

n.i. not integrable

## **Supplementary References:**

- 1. Mossine VV, Glinsky GV, Feather MS. The preparation and characterization of some Amadori compounds (1-amino-1-deoxy-D-fructose derivatives) derived from a series of aliphatic omega-amino acids. Carbohydr Res. 1994;262(2):257-70.
- 2. Kaufmann M, Meissner PM, Pelke D, Mügge C, Kroh LW. Structure–reactivity relationship of Amadori rearrangement products compared to related ketoses. Carbohydr Res. 2016;428:87-99.
- 3. Kapczyńska K, Stefanowicz P, Jaremko L, Jaremko M, Kluczyk A, Szewczuk Z. The efficient synthesis of isotopically labeled peptide-derived Amadori products and their characterization. Amino Acids. 2011;40(3):923-32.
- 4. Mossine VV, Barnes CL, Mawhinney TP. Structure of D-fructosamine hydrochloride and D-fructosamine hydroacetate. J Carbohydr Chem. 2009;28(5):245-63.
- 5. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995;5(1):67-81.